

# Topic Test Summer 2022

Pearson Edexcel GCE Mathematics (9MA0)

## **Paper 3 – Statistics**

**Topic 3: Probability and Venn diagrams** 

### Contents

| General guidance to Topic Tests        | 3  |
|----------------------------------------|----|
| Revise Revision Guide content coverage | 4  |
| Questions                              | 5  |
| Mark Scheme                            | 19 |



#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

### **General guidance to Topic Tests**

#### Context

• Topic Tests have come from past papers both <u>published</u> (those materials available publicly) and unpublished (those currently under padlock to our centres) presented in a different format to allow teachers to adapt them for use with candidates.

#### Purpose

- The purpose of this resource is to provide qualification-specific sets/groups of questions covering the knowledge, skills and understanding relevant to this Pearson qualification.
- This document should be used in conjunction with the advance information for the subject as well as general marking guidance for the qualification (available in published mark schemes).

### **Revise Revision Guide content coverage**

The questions in this topic test have been taken from past papers, and have been selected as they cover the topic(s) most closely aligned to the <u>A level</u> advance information for summer 2022:

- Topic 3: Discrete probability distributions; normal approximation

The focus of content in this topic test can be found in the Revise Pearson Edexcel A level Mathematics Revision Guide. Free access to this Revise Guide is available for front of class use, to support your students' revision.

| Contents         | Revise Guide   | Level   |
|------------------|----------------|---------|
|                  | page reference |         |
| Pure Mathematics | 1-111          | A level |
| Statistics       | 112-147        | A level |
| Mechanics        | 148-181        | A level |

Content on other pages may also be useful, including for synoptic questions which bring together learning from across the specification.

### Questions Question T3\_Q1

1. Three bags, A, B and C, each contain 1 red marble and some green marbles.

Bag A contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 4 green marbles only Bag C contains 1 red marble and 2 green marbles only

Sasha selects at random one marble from bag A.If he selects a red marble, he stops selecting.If the marble is green, he continues by selecting at random one marble from bag B.If he selects a red marble, he stops selecting.If the marble is green, he continues by selecting at random one marble from bag C.(a) Draw a tree diagram to represent this information.

(b) Find the probability that Sasha selects 3 green marbles.

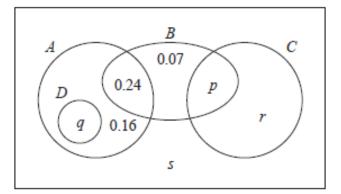
(c) Find the probability that Sasha selects at least 1 marble of each colour.

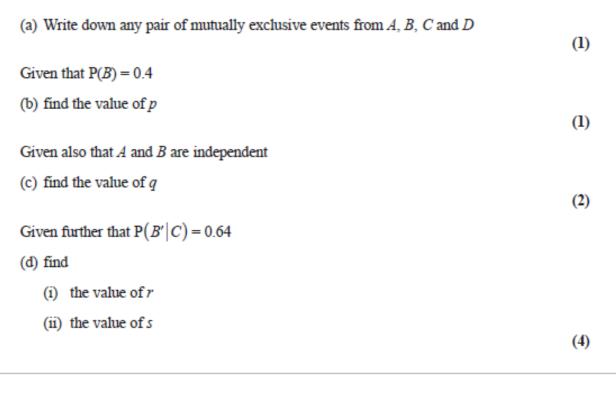
(d) Given that Sasha selects a red marble, find the probability that he selects it from bag *B*.

(2)

(2)

(2)


(2)


| Question 1 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 1 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |

1. The Venn diagram shows the probabilities associated with four events, A, B, C and D





| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

4. The discrete random variable D has the following probability distribution

| d        | 10             | 20             | 30             | 40             | 50             |
|----------|----------------|----------------|----------------|----------------|----------------|
| P(D = d) | $\frac{k}{10}$ | $\frac{k}{20}$ | $\frac{k}{30}$ | $\frac{k}{40}$ | $\frac{k}{50}$ |

where k is a constant.

(a) Show that the value of k is  $\frac{600}{137}$ 

(2)

(3)

The random variables  $D_1$  and  $D_2$  are independent and each have the same distribution as D.

(b) Find  $P(D_1 + D_2 = 80)$ 

Give your answer to 3 significant figures.

A single observation of D is made.

The value obtained, *d*, is the common difference of an arithmetic sequence.

The first 4 terms of this arithmetic sequence are the angles, measured in degrees, of quadrilateral  ${\cal Q}$ 

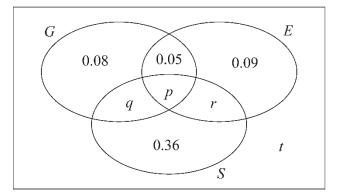
(c) Find the exact probability that the smallest angle of Q is more than 50°

(5)

| Question 4 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 4 continued |      |  |
|----------------------|------|--|
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      | <br> |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |
|                      |      |  |

| Question 4 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |


4. A large college produces three magazines.

One magazine is about green issues, one is about equality and one is about sports. A student at the college is selected at random and the events G, E and S are defined as follows

G is the event that the student reads the magazine about green issues

- E is the event that the student reads the magazine about equality
- S is the event that the student reads the magazine about sports

The Venn diagram, where p, q, r and t are probabilities, gives the probability for each subset.



- (a) Find the proportion of students in the college who read exactly one of these magazines.
- No students read all three magazines and P(G) = 0.25
- (b) Find
  - (i) the value of p
  - (ii) the value of q

Given that  $P(S | E) = \frac{5}{12}$ 

(c) find

- (i) the value of r
- (ii) the value of t

(4)

(1)

(3)

- (3)
- (d) Determine whether or not the events  $(S \cap E')$  and G are independent. Show your working clearly.

15

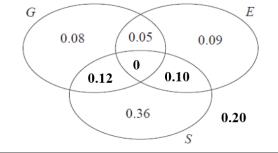
| Question 4 continued. |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

•

| Question 4 continued. |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

| Question 4 continued. |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

### Mark Scheme Question T3\_Q1


| Question | Scheme                                                                                                                                                                                                                                            | Marks | AOs  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 1(a)     | $\frac{2}{3}$ G                                                                                                                                                                                                                                   | B1    | 1.1b |
|          | $ \begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \\ \frac{1}{5} \\ \frac{1}{5} \\ R \end{array} $                                                                                                                                                  | dB1   | 1.1b |
|          | 10 R                                                                                                                                                                                                                                              | (2)   |      |
| (b)      | $\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}$                                                                                                                                                                                              | M1    | 1.1b |
|          | $=\frac{12}{25}(=0.48)$                                                                                                                                                                                                                           | A1    | 1.1b |
|          |                                                                                                                                                                                                                                                   | (2)   |      |
| (c)      | $\frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}  \text{or}  1 - \left(\frac{1}{10} + \frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}\right)$                                                             | M1    | 3.1b |
|          | $=\frac{21}{50}$ (= 0.42)                                                                                                                                                                                                                         | A1    | 1.1b |
|          |                                                                                                                                                                                                                                                   | (2)   |      |
| (d)      | $[P(\text{Red from } B   \text{Red selected})] = \frac{\frac{9}{10} \times \frac{1}{5}}{\frac{1}{10} + \frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}} \left[ = \frac{\frac{9}{50}}{\frac{13}{25}} \right]$ | M1    | 3.1b |
|          | $=\frac{9}{26}$                                                                                                                                                                                                                                   | A1    | 1.1b |
|          |                                                                                                                                                                                                                                                   | (2)   |      |
|          | (8 mai                                                                                                                                                                                                                                            |       |      |

| Notes       |                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | Allow decimals or percentages throughout this question.                                                                                                                                                                                                                                                                                                                           |  |
| (a)         | <ul> <li>B1: for correct shape (3 pairs) and at least one label on at least two pairs G(reen) and R(ed) allow G and G' or R and R' as labels, etc. condone 'extra' pairs if they are labelled with a probability of 0</li> <li>dB1: (dep on previous B1) all correct i.e. for all 6 correct probabilities on the correct branches with at least one label on each pair</li> </ul> |  |
| <b>(</b> b) | M1: Multiplication of 3 correct probabilities (allow ft from their tree diagram)<br>A1: $\frac{12}{25}$ oe                                                                                                                                                                                                                                                                        |  |
| (c)         | <ul> <li>M1: Either addition of only two correct products (product of two probs + product of three probs) which may ft from their tree diagram or for 1-('<sup>1</sup>/<sub>10</sub>'+'(b)')</li> <li>A1: <sup>21</sup>/<sub>50</sub> oe</li> </ul>                                                                                                                               |  |
| (d)         | M1: Correct ratio of probabilities<br>or correct ft ratio of probabilities e.g. $\frac{\frac{19}{10} \times \frac{11}{1}}{1 - \frac{10}{10}}$ or $\frac{\frac{19}{10} \times \frac{11}{3}}{\frac{11}{10} + \frac{10}{10}}$ with num < den                                                                                                                                         |  |

| Qu 1   | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks            | AO           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| (a)    | $A, C  \underline{\text{or}}  D, B  \underline{\text{or}}  D, C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1               | 1.2          |
| (b)    | [p = 0.4 - 0.07 - 0.24 = ]  0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)<br>B1<br>(1) | 1.1b         |
| (c)    | A and $B$ independent implies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-)              | 1.1b         |
|        | $P(A) \times 0.4 = 0.24$ or $(q+0.16+0.24) \times 0.4 = 0.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1               |              |
|        | $r_{2} \mathbf{P}(4) = 0$ ( and $r_{1} = 0$ 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1.27.2         |              |
|        | so $P(A) = 0.6$ and $q = 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alcso            | 1.1b         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)              |              |
| (d)(i) | $P(B' C) = 0.64 \text{ gives } \frac{r}{r+p} = 0.64 \text{ or } \frac{r}{r+"0.09"} = 0.64$ $r = 0.64r + 0.64 \text{``p''} \text{ so } 0.36r = 0.0576 \text{ so } r = 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1               | 3.1a         |
|        | r = 0.64r + 0.64 "p" so $0.36r = 0.0576$ so $r = 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1               | 1.1b         |
|        | $\mathbf{U}_{1} = \mathbf{U}_{1} + \mathbf{U}_{1} $ | M                | 1 11         |
| (ii)   | Using sum of probabilities = 1 e.g. " $0.6$ " + $0.07$ + " $0.25$ " + $s = 1$<br>so $s = 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1         | 1.1b<br>1.1b |
|        | 50 5 - <u>0.00</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)              | 1.10         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |
|        | NT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8 mark          | (s)          |
| (a)    | Notes           B1 for one correct pair. If more than one pair they must all be correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
|        | Condone in a correct probability statement such as $P(A \cap C) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |
|        | or correct use of set notation e.g. $A \cap C = \emptyset$<br>BUT e.g. "P(A) and P(C) are mutually exclusive" alone is B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |              |
| (b)    | B1 for $p = 0.09$ (Maybe stated in Venn Diagram [VD])<br>[ If values in VD and text conflict, take text or a value <u>used</u> in a late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er part]         |              |
| (c)    | M1 for a correct equation in one variable for $P(A)$ or q using indep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endence          |              |
|        | <u>or</u> for seeing <b>both</b> $P(A \cap B) = P(A) \times P(B)$ and $0.24 = 0.6 \times 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |
|        | A1cso for $q = 0.20$ or exact equivalent (dep on correct use of independence)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |
| Beware | Use of $P(A) = 1 - P(B) = 0.6$ leading to $q = 0.2$ scores M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |
| (d)(i) | 1 <sup>st</sup> M1 for use of $P(B'   C) = 0.64$ leading to a correct equation in r and possibly p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |
|        | Can ft their p provided $0 \le p \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                |              |
|        | 1 <sup>st</sup> A1 for $r = 0.16$ or exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11               |              |
| (ii)   | $2^{nd}$ M1 for use of total probability = 1 to form a linear equation in s. A Can follow through their values provided each of p, q, r are in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | r etc        |
|        | $2^{nd}$ A1 for $s = 0.08$ or exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L-7 <b>*/</b>    |              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |

| Qu 4   | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks                | AO                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|
| (a)    | $\frac{k}{10} + \frac{k}{20} + \frac{k}{30} + \frac{k}{40} + \frac{k}{50} = 1 \text{ or } \frac{1}{600} (60k + 30k + 20k + 15k + 12k) = 1$                                                                                                                                                                                                                                                                                                                                           | M1                   | 1.1b                        |
|        | So $k = \frac{600}{137}$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alcso                | 1.1b                        |
| (b)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)<br>M1            | 2.1                         |
|        | $P(D_1 + D_2 = 80) = \frac{k}{50} \times \frac{k}{30} \times 2 + \left(\frac{k}{40}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                        | M1                   | 3.4                         |
|        | = 0.0375619 awrt <u>0.0376</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 (3)               | 1.1b                        |
| (c)    | Angles are: $a, a+d, a+2d, a+3d$<br>$S_4 = a + (a+d) + (a+2d) + (a+3d) = 360$<br>Smallest angle is $a > 50$ consider cases:<br>d = 10 so $a = 75$ or $d = 20$ so $a = 60$ [ $d = 30$ gives $a = 45$ no good]                                                                                                                                                                                                                                                                         | M1<br>M1<br>A1<br>M1 | 3.1a<br>2.1<br>2.2a<br>3.1b |
|        | $P(D = 10 \text{ or } 20) = \frac{3k}{20} = \frac{90}{\underline{137}}$                                                                                                                                                                                                                                                                                                                                                                                                              | A1                   | 1.1b                        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (5)                  | -1>                         |
|        | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 10 ma              | rks)                        |
| (a)    | M1 for clear use of sum of probabilities = 1 (all terms seen)                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                             |
| Verify | A1 cso (*) M1 scored and no incorrect working seen.<br>(Assume $k = \frac{600}{137}$ ) to score the final A1 they must have a <u>final</u> comment " $\therefore k = \frac{600}{137}$ "                                                                                                                                                                                                                                                                                              |                      |                             |
| (b)    | 1 <sup>st</sup> M1 for selecting at least 2 of the relevant cases (may be implied by their e.g. allow 30, 50 and 50,30 i.e. $D_1$ and $D_2$ labels not required<br>2 <sup>nd</sup> M1 for using the model to obtain a correct expression for two different properties of the model to relevant the for $k$ .<br>Allow for $\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2$ or $2 \times \left(\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2\right)$ | -                    | F                           |
|        | A1 for awrt 0.0376 (exact fraction is $\frac{705}{18769}$ )                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                             |
| (c)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                             |

| Qu 4   | Scheme                                                                                                                                                                                | Marks          | AO            |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--|--|
| (a)    | 0.08 + 0.09 + 0.36 = 0.53                                                                                                                                                             | B1             | 1.1b          |  |  |
|        |                                                                                                                                                                                       | (1)            |               |  |  |
| (b)(i) | $\left[ \mathbf{P}(G \cap E \cap S) = 0  \Rightarrow \right]  \underline{p = 0}$                                                                                                      | B1             | 1.1b          |  |  |
| (ii)   | $[P(G) = 0.25 \implies] \ 0.08 + 0.05 + q + "p" = 0.25$                                                                                                                               | M1             | 1.1b          |  |  |
|        | q = 0.12                                                                                                                                                                              | A1             | 1.1b          |  |  |
|        | <br>                                                                                                                                                                                  | (3)            | 2.1           |  |  |
| (c)(i) | $\left[ \left[ P(S \mid E) = \frac{5}{12} \implies \right] \frac{r + p''}{r + p'' + 0.09 + 0.05} = \frac{5}{12} \right]$                                                              | M1<br>A1ft     | 3.1a<br>1.1b  |  |  |
|        | $\begin{bmatrix} 12 & 12 \\ 12r = 5r + 5 \times 0.14 \\ \end{bmatrix}  \underline{r = 0.10}$                                                                                          | A1             | 1.1b          |  |  |
| (ii)   | $\begin{bmatrix} 12t - 0t + 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                           |                |               |  |  |
|        | $\begin{bmatrix} 0.03 + 0.03 + 0.12 + 0 + 0.09 + 0.10 + 0.30 + t - 1 \\$                                                                                                              | B1ft<br>(4)    | 1.1b          |  |  |
| (d)    | $P(S \cap E') = 0.36 + "q" [= 0.48]$                                                                                                                                                  | B1ft           | 1.1b          |  |  |
|        |                                                                                                                                                                                       | DIII           | 1.10          |  |  |
|        | $P([(S \cap E')] \cap G) = "q"[=0.12]$ and $P(G) = 0.25$ and                                                                                                                          | M1             | 2.1           |  |  |
|        | $\mathbf{P}(S \cap E') \times \mathbf{P}(G) = "0.48" \times \frac{1}{4} \text{ or } 0.12$                                                                                             |                |               |  |  |
|        | $P(S \cap E') \times P(G) = 0.12 = P([(S \cap E')] \cap G)$ so are independent                                                                                                        | A1             | 2.2a          |  |  |
|        |                                                                                                                                                                                       | (3)            |               |  |  |
|        |                                                                                                                                                                                       | ( 11 mar       | ks)           |  |  |
| (a)    | Notes       B1     for 0.53 (or exact equivalent) [ Allow 53%]                                                                                                                        |                |               |  |  |
| (a)    |                                                                                                                                                                                       |                |               |  |  |
| (b)(i) | B1 for $p = 0$ (may be placed in Venn diagram)                                                                                                                                        |                |               |  |  |
| (ii)   | M1 for a linear equation for q (ft letter "p" or their value if $0_{m} p_{m} 0.12$ ) =                                                                                                | > by $p + q =$ | = 0.12        |  |  |
|        | A1 for $q = 0.12$ (may be placed in Venn diagram)                                                                                                                                     |                |               |  |  |
| (c)(i) | M1 for a ratio of probabilities (r on num and den) (on LHS) with num $<$ den                                                                                                          | and num        | <u>or</u> den |  |  |
|        | correct ft. Allow ft of letter "p" or their p where 0, $p < 0.86$ but "+ 0"                                                                                                           | -              |               |  |  |
|        | 1 <sup>st</sup> A1ft for a correct ratio of probabilities (on LHS) allowing ft of their $p$ when                                                                                      |                | 0.86          |  |  |
| (ii)   | 2 <sup>nd</sup> A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only<br>B1ft for $t = 0.2(0)$ (o.e.) or correct ft i.e. $0.42 - (p + q + r)$ where $p, q, r$ and |                | nrohs         |  |  |
|        | $\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                          | iu i ui v uii  | probs         |  |  |
| (d)    | B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter "q" or their value if 0 , q ,                                                                                                  | 0.12)          |               |  |  |
|        | M1 for attempting all required probs (labelled) and using them in a correct tes                                                                                                       | st (allow ft   | of $q$ )      |  |  |
| 60     | A1 for all probs correct and a correct deduction (no ft deduction here)                                                                                                               | ward (DON      | A1 A 1 Y      |  |  |
| SC     | No "P" If correct argument seen apart from P for probability for all 3 marks, a<br>If unsure about an attempt using conditional probabilities, please sen                             |                |               |  |  |
|        |                                                                                                                                                                                       |                |               |  |  |
|        | G                                                                                                                                                                                     |                |               |  |  |
| (      | 0.08 (0.05) 0.09                                                                                                                                                                      |                |               |  |  |

